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Abstract
Many parametric statistical models are not prop-
erly normalised and only specified up to an in-
tractable partition function, which renders pa-
rameter estimation difficult. Examples of unnor-
malised models are Gibbs distributions, Markov
random fields, and neural network models in unsu-
pervised deep learning. In previous work, the es-
timation principle called noise-contrastive estima-
tion (NCE) was introduced where unnormalised
models are estimated by learning to distinguish
between data and auxiliary noise. An open ques-
tion is how to best choose the auxiliary noise
distribution. We here propose a new method that
addresses this issue. The proposed method shares
with NCE the idea of formulating density esti-
mation as a supervised learning problem but in
contrast to NCE, the proposed method leverages
the observed data when generating noise sam-
ples. The noise can thus be generated in a semi-
automated manner. We first present the underly-
ing theory of the new method, show that score
matching emerges as a limiting case, validate the
method on continuous and discrete valued syn-
thetic data, and show that we can expect an im-
proved performance compared to NCE when the
data lie in a lower-dimensional manifold. Then
we demonstrate its applicability in unsupervised
deep learning by estimating a four-layer neural
image model.

1. Introduction
We consider the problem of estimating the parameters θ ∈
RM of an unnormalised statistical model φ(u;θ) : X 7→
R+ from observed data X = {x1, . . . ,xN}, where the
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xi ∈ X are independently sampled from the unknown data
distribution pd. Unnormalised models output non-negative
numbers but do not integrate or sum to one, i.e. they are
statistical models that are defined up to the partition function
Z(θ) =

∫
φ(u;θ) du. Unnormalised models are widely

used, e.g. to model images (Köster & Hyvärinen, 2010;
Gutmann & Hyvärinen, 2013), natural language (Mnih &
Teh, 2012; Zoph et al., 2016), or memory (Hopfield, 1982).

If the partition function Z(θ) can be evaluated analyti-
cally in closed form, the unnormalised model φ(u;θ) can
be easily converted to a (normalised) statistical model
p(u;θ) = φ(u;θ)/Z(θ) that can be estimated by maximis-
ing the likelihood. However, for most unnormalised models
the integral defining the partition function is analytically
intractable and computationally expensive to approximate.

Several methods have been proposed in the literature to
estimate unnormalised models including Monte Carlo maxi-
mum likelihood (Geyer, 1994), contrastive divergence (Hin-
ton, 2002), score matching (Hyvärinen, 2005), and noise-
contrastive estimation (Gutmann & Hyvärinen, 2010; 2012)
and its generalisations (Pihlaja et al., 2010; Gutmann &
Hirayama, 2011). The basic idea of noise-contrastive esti-
mation (NCE) is to formulate the density estimation problem
as a classification problem where the model is trained to
distinguish between the observed data and some reference
(noise) data. NCE is used in several application domains
(Mnih & Teh, 2012; Chen et al., 2015; Tschiatschek et al.,
2016) and similar “learning by comparison” ideas are em-
ployed for learning with generative latent variable models
(Gutmann et al., 2014; Goodfellow et al., 2014).

In NCE, the choice of the auxiliary noise distribution is left
to the user. While simple distributions, e.g. uniform or Gaus-
sian distributions, have successfully been used (Gutmann &
Hyvärinen, 2012; Mnih & Teh, 2012), the estimation perfor-
mance of NCE depends on the distribution chosen and more
tailored distributions were found to typically yield better
results, see e.g. (Ji et al., 2016). Intuitively, the noise sam-
ples in NCE ought to resemble the observed data in order
for the classification problem not to be too easy. To allevi-
ate the burden on the user to generate such noise, we here
propose conditional noise-contrastive estimation that semi-
automatically generates the noise based on the observed
data.
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The rest of the paper is structured as follows. In Section
2, we present the theory of conditional noise-contrastive
estimation (CNCE), establish basic properties, and prove
that a limiting case yields score matching. In Section 3,
we validate the theory on synthetic data and compare the
estimation performance of CNCE with NCE. In Section 4,
we apply CNCE to real data and show that it can handle
complex models by estimating a four-layer neural network
model of natural images, and Section 5 concludes the paper.

2. Conditional noise-contrastive estimation
Conditional noise-contrastive estimation (CNCE) turns an
unsupervised estimation problem into a supervised learn-
ing problem by training the model to distinguish between
data and noise samples. This is the same high-level ap-
proach as NCE takes, but in contrast to NCE, the novel idea
of CNCE is to generate the noise samples with the aid of
the observed data samples. Therefore, unlike NCE, CNCE
does not assume the noise samples to be generated indepen-
dently of the data samples, but rather to be drawn from a
conditional noise distribution pc. The generated noise sam-
ples are paired with the data samples, with κ noise samples
yij ∈ Y, j = 1, . . . , κ per observed data point xi. Thus, a
total of N · κ noise samples yij ∼ pc(yij |xi) are generated
from pc. We denote the collection of all noise samples by Y.
In what follows, we assume that X = Y, but this assumption
can be relaxed to X ⊆ Y (see Supplementary Materials A).
In any case, we denote the union of X and Y by U.

We derive the loss function for CNCE in analogy to the
derivation of the loss function for NCE. We divide all pairs
of data and noise samples into two classes, Cα and Cβ,
of equal size. Class Cα is formed by tuples (u1,u2) with
u1 ∈ X and u2 ∈ Y, whileCβ is formed by tuples (u1,u2)
with u1 ∈ Y and u2 ∈ X. Consequently, the probability
distributions for the classes Cα and Cβ are given by

pα(u1,u2) = pd(u1)pc(u2|u1), (1)
pβ(u1,u2) = pd(u2)pc(u1|u2), (2)

where pd denotes the distribution of the xi. The class condi-
tional distributions can be obtained by Bayes’ rule,

pCα|u(u1,u2) =
pα(u1,u2)

pα(u1,u2) + pβ(u1,u2)
(3)

=
1

1 + pd(u2)pc(u1|u2)
pd(u1)pc(u2|u1)

, (4)

pCβ|u(u1,u2) =
1

1 + pd(u1)pc(u2|u1)
pd(u2)pc(u1|u2)

. (5)

The prior class probabilities cancel because there are equally
many samples in each class.

By replacing pd(·) with the model φ( · ;θ)/Z(θ), the par-
tition functions cancel and the following parametrised ver-

sions of the class conditional distributions are obtained

pCα|u(u1,u2;θ) =
1

1 + φ(u2;θ)pc(u1|u2)
φ(u1;θ)pc(u2|u1)

, (6)

pCβ|u(u1,u2;θ) =
1

1 + φ(u1;θ)pc(u2|u1)
φ(u2;θ)pc(u1|u2)

. (7)

The CNCE loss function is now formed as the negative log
likelihood over the conditional class probabilities, in the
same manner as in NCE (Gutmann & Hyvärinen, 2012),

JN (θ) =
2

κN

κ∑

j=1

N∑

i=1

log [1 + exp(−G(xi,yij ;θ))] , (8)

G(u1,u2;θ) = log
φ(u1;θ)pc(u2|u1)

φ(u2;θ)pc(u1|u2)
. (9)

The CNCE loss function JN is the sample version of
J (θ) = 2Exy log (1 + exp(−G(x,y;θ))), which is ob-
tained by taking both N and κ to the∞ limit. To further
develop the theory, it is helpful to write J (θ) as a functional
of G, which gives

J̃ [G] = 2Exy log (1 + exp(−G(x,y))) . (10)

We then obtain the following theorem:

Theorem (Nonparametric estimation). LetG : U×U→
R be a function of the form

G(u1,u2) = f(u1)− f(u2) + log
pc(u2|u1)

pc(u1|u2)
, (11)

where f is a function from U to R. Under the assumption
X = Y, J̃ attains a unique minimum at

G∗(u1,u2) = log
pd(u1)pc(u2|u1)

pd(u2)pc(u1|u2)
(12)

for (u1,u2) ∈ X×X with pd(u1) > 0 and pc(u1|u2) > 0.

The proof of a more general version is given in Supplemen-
tary Materials A. The theorem shows that in the limit of
large N and κ, the optimal function f equals log pd up to
an additive constant. For parametrisations that are flexible
enough so thatG(u1,u2;θ

∗) = G∗(u1,u2) for some value
θ∗, the theorem together with the definition of G(u1,u2;θ)
in (9) implies that φ(u;θ∗) ∝ pd(u). We have here the
proportionality sign because the normalising constant is not
estimated in CNCE.

While the theorem above concerns nonparametric esti-
mation, and hence does not take into account how G is
parametrised, it forms the basis for a consistency proof of
CNCE. A standard approach is to identify conditions under
which JN (θ) converges uniformly in probability to J (θ)
and then to appeal to e.g. Theorem 5.7 of (van der Vaart,
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1998). A similar approach where the Kullback-Leibler diver-
gence takes the role of J can be used to prove consistency
of maximum likelihood estimation. The conditions for uni-
form convergence are typically fairly technical and we here
forego this endeavour and instead provide empirical evi-
dence for consistency in Section 3.

The generic CNCE algorithm generally takes two steps:
obtain the noise samples by sampling from the conditional
noise distribution pc, and then minimise the loss function
JN over the parameters θ. The user decides the trade-off
between precision and computational expenditures via κ
and also needs to provide pc.

There are two advantages to choosing pc over choosing the
noise distribution in NCE. First, the observed data samples
can be leveraged for sampling the noise, meaning that a
resemblance to pd is easier to achieve than it would be for
NCE. Indeed, all simulations in the paper were performed
with the simple Gaussian specified below. Second, if pc
is known to be symmetric, i.e. pc(u1|u2) = pc(u2|u1), it
does not need to be evaluated because the densities cancel
out in Equation (9).

A simple symmetric choice of pc when x and y ∈ RD is

pc(y|x; ε) = N (y;x, ε21), yij = xi + εξij . (13)

Here 1 is the identity matrix, ξij ∈ RD is a multivariate
standard normal random variable and ε ∈ [0,∞) a scalar
parameter that corresponds to the standard deviation of each
dimension, and which therefore controls the similarity be-
tween Y and X. It is here assumed that the data have been
standardised (Murphy, 2012, Chaper 4) so that the empirical
variances of the data are one for each dimension. Otherwise,
different values of ε ought to be used for each dimension.

CNCE is also applicable to discrete random variables, e.g.
by using a multinoulli distribution over y conditioned on x,
and non-negative data (see Supplementary Materials C).

In our simulations, we adjust ε using simple heuristics so
that the gradients of the loss function are not too small.
This typically occurs when ε is too large so that the noise
and data are easily distinguishable, but also when ε is too
small. It can be verified that the loss function attains the
value 2 log(2) for ε = 0 independent of the model and
θ. In brief, the heuristic algorithm starts with a small ε
that is incremented until the value of the loss function is
sufficiently far away from 2 log(2).

While small ε cause the gradients to be small in absolute
terms, the following theorem shows that the loss function
remains meaningful and that CNCE then corresponds to
score matching (Hyvärinen, 2005).

Theorem (Connection to score matching). Assume that
φ(u;θ) is an unnormalised probability density and that

fθ(u) = log φ(u;θ) is twice differentiable. If y = x + εξ
where ξ is a vector of uncorrelated random variables of
mean zero and variance one that are independent from x
and have a symmetric density, then

J (θ) =ε
2

2
Ex

[∑

i

∂2fθ(x)

∂x2i
+

1

2
||∇xfθ(x)||22

]

+ 2 log(2) +O(ε3).

(14)

The term in the brackets is the loss function that is min-
imised in score matching (Hyvärinen, 2005). The theorem
is proved in Supplementary Materials B. Note that pc in (13)
fulfills the conditions in the theorem.

The theorem can be understood as follows: Score match-
ing consists in finding parameter values so that the slope
of the model pdf matches the slope of the data pdf.
For symmetric conditional noise distributions pc, the
nonlinearity G in Equation (9) equals G(u1,u2;θ) =
log φ(u1;θ) − log φ(u2;θ) = fθ(u1) − fθ(u2). From
(12), we know that at the optimum of J (θ), G(u1,u2;θ)
matches log pd(u1) − log pd(u2). The values which the
arguments u1 and u2 take during the minimisation are de-
termined by the conditional noise distribution. For small
ε, the arguments are always close to each other, so that
G(u1,u2;θ) is approximately proportional to a directional
derivative of fθ(u) = log φ(u;θ) along a random direction.
This means that for small ε, J (θ) is minimised when the
slope of the model pdf matches the slope of the data pdf, as
in score matching.

3. Empirical validation of the theory
We here validate consistency and compare CNCE with NCE
on synthetic data. The models below were used in unnor-
malised form for CNCE and NCE. For the results with MLE,
the models were first normalised. Additional results for non-
negative and discrete data are provided in Supplementary
Materials C.

3.1. Models

The Gaussian model is an unnormalised multivariate
Gaussian model in five dimensions with zero mean and
parametrised precision matrix Λ. As the precision matrix is
symmetric, the Gaussian model has 15 parameters,

log φ(u;Λ) = −1

2
uTΛu, u ∈ R5. (15)

The estimation error was measured as the Euclidean distance
between the true and estimated parameters.

The ICA model is commonly used in signal possessing for
blind source separation (Hyvärinen & Oja, 2000). Assuming
equally many sources as data dimensions, D = 4, and a
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(a) Contour plot of the data pdf (b) NCE noise (histogram) (c) CNCE noise (histogram)

Figure 1: Visualisation of the ring model distribution and corresponding NCE and CNCE noise in two dimensions.

Laplacian distribution for the sources, the unnormalised
ICA model is

log φ(u;B) = −
√
2
D∑

j=1

|bj · u|, u ∈ R4. (16)

The model is parametrised by the demixing matrix B and
has D2 = 16 free parameters. The (normalised) ICA model
can be estimated using MLE (Hyvärinen & Oja, 2000, 4.4.1).
The estimation error was calculated as the Euclidean dis-
tance between true and estimated parameter vector after
accounting for the sign and order ambiguity of the ICA
model (Hyvärinen & Oja, 2000, 2.2) in the same manner as
in (Gutmann & Hyvärinen, 2012).

Both the Gaussian and the ICA model were previously used
to validate the consistency of NCE, and a Gaussian noise dis-
tribution achieved good estimation performance (Gutmann
& Hyvärinen, 2012). In order to investigate the potential
benefit of the adaptive noise of CNCE, we used the follow-
ing more challenging “ring model” where the data lie in
lower dimensional manifold.

The Ring model is given by

log φ(u;µr, γr) = −
γr
2
(‖u‖2 − µr)2, u ∈ R5. (17)

The model is best understood in polar coordinates: the
angular components are uniformly distributed and the radial
direction is Gaussian with mean µr and precision γr. The
mean is assumed known, and the task is to estimate the
precision parameter γr. Figure 1 shows the (normalised)
pdf for the ring model in two dimensions, as well as the NCE
noise and the CNCE noise generated according to Equation
(13). As often done in NCE, a Gaussian noise is chosen
to match the mean and covariance of the data distribution.
Because of the manifold structure of the data, the NCE noise
is concentrated in areas where the data distribution takes
small values, which is in contrast to the CNCE noise that
well covers the data manifold.

3.2. Results

Figures 2a and 2b show the estimation error as a function
of the number of data points N . For both the Gaussian and
ICA models, the CNCE error decreases linearly in the log-
log domain as the sample size increases, which indicates
convergence in quadratic mean, and hence consistency. Fur-
thermore, as the number of noise-per-data points κ grows,
the error appears to approach the MLE error.

The MLE of the ICA model had a tendency to get stuck in
local minima for a small part of the estimations (13 out of
100). Consequently, the 0.9 quantile for MLE in Figure 2b
shows a high and relatively constant error corresponding to
such local minima. While this also occurred for CNCE, it
is not visible in Figure 2b as it occurred less often (7/100
simulations).

As shown in Figure 2c, NCE performs better than CNCE
for the Gaussian model given the same number of noise
and data samples. For the ICA model, they are roughly on-
par for sufficiently many data samples, see Figure 2d. An
advantage for NCE on these models may not be surprising
given that the NCE noise distribution already covers the
data distribution very well. Furthermore, Figures 2e and 2f
show that the difference between NCE and CNCE decreases
as ratio of noise to data samples increases.

Figure 3 shows the results for the ring model using κ =
10. CNCE achieves about one order of magnitude lower
estimation error compared to NCE. With reference to Figure
1, this vast improvement over NCE can be understood as
follows: For the noise distribution used in NCE, the majority
of the noise samples end up inside the ring where the data
sample probability is low, so that they are not useful for
learning (the classification problem is too easy, with the
noise not providing enough contrast). CNCE, on the other
hand, automatically generates suitably contrastive noise on
(or close to) the data manifold, which facilitates learning.



Conditional Noise-Contrastive Estimation of Unnormalised Models

2 2.5 3 3.5 4 4.5
Sample size log10 N

-3

-2

-1

0

1

lo
g
10

sq
E
rr

or

CNCE2
CNCE6
CNCE20
MLE

(a) Gaussian, consistency (κ = 2, 6, 20)

2 2.5 3 3.5 4 4.5
Sample size log10 N

-4

-3

-2

-1

0

1

lo
g
10

sq
E
rr

or

CNCE2
CNCE6
CNCE20
MLE

(b) ICA model, consistency (κ = 2, 6, 20)
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(c) Gaussian, comparison to NCE (κ = 10).
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(d) ICA model, comparison to NCE (κ = 10).
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(e) Gaussian, comparison to NCE (N = 5000).
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(f) ICA model, comparison to NCE (N = 5000).

Figure 2: (a-b) CNCE consistency results. (c-d) Comparison to NCE for fixed noise-per-data ratio κ. (e-f) Comparison for
fixed sample size N . The solid lines show the median result across 100 different simulations, and the dashed lines the 0.1
and 0.9 quantiles. For each of the 100 simulations, a new random set of data generating parameters was used.
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Figure 3: Ring model in 5D, comparison to NCE (κ = 10)

4. Neural image model
To show that CNCE can be used to estimate complex un-
normalised models, we used it for unsupervised deep learn-
ing and estimated a four-layer feed-forward neural network
model from natural images. The model extends the two- and
three-layer models of natural images previously estimated
with NCE (Gutmann & Hyvärinen, 2012; 2013). We here
focus on the learned features. In Supplementary Materials
D, we present a qualitative comparison with NCE.

The data X are image patches of size 32× 32 px, sampled
from 11 different monochrome images depicting wild life
scenes (van Hateren & van der Schaaf, 1998) in the same
manner as (Gutmann & Hyvärinen, 2013). Figure 4a shows
examples of the extracted image patches. The sampled im-
age patches were vectorised and both the ensemble mean
and local mean (DC component) were subtracted. The re-
sulting data were then whitened and their dimensionality
reduced to D = 600 by principal component analysis (Mur-
phy, 2012, Chapter 12.2), retaining 98% of the variance. We
denote the data (random vector) after preprocessing by u(1).

(a) Example of 32× 32 natural image patches.

(b) Corresponding noise samples (ε = 0.75).

Figure 4: Data for estimating the deep neural image model.

4.1. Model specification

The unnormalised image model φ defined below consist of
a “structured” part φ̃ that models the non-Gaussianity of the
natural image data and a Gaussian part that accounts for the
covariance structure. In the PCA space, the model is

log φ(u(1);θ) = log φ̃(u(1);θ)− 1

2
u(1) · u(1), (18)

where · denotes the inner product between two vectors. This
corresponds to a model for images defined in the subspace
spanned by the first D principle component directions.

The Gaussian term in (18) tends to mask the non-Gaussian
structure that we are primarily interested in. In order to
better learn about the non-Gaussian properties of natural
images, we define the conditional noise distribution as

log pc(u2|u1) = log p̃c(u2|u1)−
1

2
u2 · u2 + const, (19)

where p̃c is the Gaussian noise distribution in (13). With
this choice, the two Gaussian terms of the model and noise
cancel in the nonlinearity G(u1,u2;θ), so that

G(u1,u2;θ) = log
φ̃(u1;θ)p̃c(u2|u1)

φ̃(u2;θ)p̃c(u1|u2)
. (20)

Due to the cancelling, φ̃ in Equation (18) is considered
the effective model and p̃c the effective conditional noise
distribution. Examples of noise patches sampled from p̃c
are shown in Figure 4b.

We next define the (effective) model φ̃ via a four layers deep,
fully connected, feed-forward neural network. The general
idea is that we iterate between feature extraction and pool-
ing layers (Gutmann & Hyvärinen, 2013). Unlike in many
image models, we here do not impose translation invariance
by using convolutional networks; neither do we fix the pool-
ing layers but learn them from data. The input and output
dimensions of each layer are provided in Supplementary
Materials D.

The preprocessed image patches u(1) are first passed
through a gain-control stage where they are centred and
rescaled to cancel out some effects of the lighting condi-
tions (Gutmann & Hyvärinen, 2012),

ũ(u) =
√
D − 1

u− 〈u〉
‖u− 〈u〉‖2

, 〈u〉 = 1

D

D∑

k=1

uk. (21)

Then they are passed through a feature extraction and a
pooling layer,

z
(1)
j = w

(1)
j · ũ(u(1)), (22)

z
(2)
j = log

(
q
(2)
j ·

(
z(1)

)2
+ 1

)
. (23)
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Both the features w
(1)
j and pooling weights q

(2)
j are free

parameters; we thus learn which 1st layer outputs to pool
together. The pooling weights are restricted to be non-
negative, which we enforce by writing them as q

(2)
j =

(w
(2)
j )2, with element-wise squaring. The log nonlinearity

counteracts the squaring, leading to an approximation of the
max operation (Gutmann & Hyvärinen, 2013).

We then repeat this processing block of gain control, feature
extraction, and pooling: The outputs z(2)j of the 2nd layer
are passed through the same gain control stage as the image
patches, i.e. whitening, dimensionality reduction and rescal-
ing, in line with previous work (Gutmann & Hyvärinen,
2013), followed by feature extraction and pooling,

z
(3)
j = w

(3)
j · ũ(3), z

(4)
j = q

(4)
j · z(3). (24)

The pooling weights q
(4)
j are restricted to be non-negative,

which is enforced as for the second layer. We here work with
a simpler pooling model than in Equation (23). An output
z
(4)
j of the pooling layer is large if q

(4)
j pools over units that

are concurrently active, which is related to detecting sign
congruency (Gutmann & Hyvärinen, 2009).

The unnormalised model φ̃ is then given by the total ac-
tivation of the units in each layer, which means that the
overall population activity indicates how likely an input is.
Following (Gutmann & Hyvärinen, 2012; 2013) we used

log φ̃(L)(u(1);θ) =

K(L)∑

j=1

fth

(
z
(L)
j + b

(L)
j

)
(25)

for L = 2, 3, 4 where fth is a smooth rectifying linear unit1

and b(L)j threshold parameters that are also learned from the
data. The thresholding causes only strongly active units to
contribute to log φ̃(L)(u(1);θ), which is related to sparse
coding (Gutmann & Hyvärinen, 2012). In the case L = 1,
the outputs z(1)j were passed through the additional nonlin-
earity log((·)2 + 1) prior to thresholding. This corresponds
to computing the 2nd layer outputs with the 2nd layer weights
fixed to correspond together to the identity matrix.

We learned the weights hierarchically one layer at a time,
e.g. after learning of the 1st layer weights, we kept them
fixed and learned the second layer weight vector w

(2)
j etc.

4.2. Estimation results

The learned features, i.e receptive fields (RFs) of the 1st

layer neurons, can be visualised as images. The learned 2nd

layer weight vectors are sparse and the non-zero weights
indicate over which 1st layer units the pooling happens. In
Figure 5, we visualise randomly selected 2nd layer units,

1fth(u) = 0.25 log(cosh(2u)) + 0.5u+ 0.17

and the 1st layer units that they pool together. The 1st layer
has learned Gabor features (Hyvärinen et al., 2009, Chapter
3) and the 2nd layer tends to pool these features according
to frequency, orientation and locality, in line with previous
models of natural images (Hyvärinen et al., 2009).

To visualise the learned weights on the 3rd layer, we fol-
lowed (Gutmann & Hyvärinen, 2013) and visualised them
as space-orientation receptive fields. That is, we probed
the learned neural network with Gabor stimuli at different
locations, orientations, and frequency, and visualised the
response of the 3rd layer units as a polar plot. The polar plot
is centred on the probing location, and the maximal radius
is an indicator of the envelope and hence spatial frequency
of the Gabor stimulus (larger circles correspond to lower
spatial frequencies). We visualised the pooling on the 4th

layer as for the 2nd layer by indicating the pooling strength
with bars underneath the space-orientation receptive fields.

Figure 6 shows examples of the learned 3rd and 4th layer
units as well natural image inputs that elicit strong responses
for the 4th layer units shown. The learned 3rd layer units
detect longer straight or bended contours, which is largely in
line with previous findings (Gutmann & Hyvärinen, 2013).
The learned 4th layer unit on the top in the figure (unit 4) has
learned to pool together 3rd layer units that share the same
spatial orientation preference but are tuned to different spa-
tial frequencies. This is line with previous modelling results
(Hyvärinen et al., 2005) where similar pooling emerged in a
model with more restrictive assumptions. The learned 4th

layer unit shown on the bottom (unit 19) is tuned to vertical
and horizontal low-frequency structure that bend around the
southwest corner, which corresponds to a low-frequency
corner detector. The full set of learned units is shown in
the same way in Supplementary Materials D. Overall, the
results show that CNCE both yields results that are in line
with previous work and further finds novel and intuitively
reasonable pooling patterns on the newly considered fourth
layer.

5. Conclusions
In this paper, we addressed the problem of density estima-
tion for unnormalised models where the normalising par-
tition function cannot be computed. We proposed a new
method that follows the principles of noise-contrastive esti-
mation and “learning by comparison”. In contrast to noise-
contrastive estimation (NCE), in the proposed conditional
noise-contrastive estimation (CNCE), the contrastive noise
is allowed to depend on the data.

The main advantage of allowing the noise distribution to
depend on the data is that the information in the data can be
leveraged to produce, with rather simple conditional noise
distributions as for example a Gaussian, noise samples that
are well adapted to a wide range of different data and model
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Figure 5: Learned features and pooling for the first two layers of the neural image model. The result for eight units in the
2nd layer are shown (each row shows two units). Each icon visualises a 1st layer feature, and the thin bar beneath each icon
indicates q(2)jk /maxk q

(2)
jk . Each unit is restricted to show a maximum of ten receptive fields, or as many as to account for

90% of the sum of the second layer weight vector.

(a) Unit 4: pooling and space-orientation receptive fields
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(b) Unit 4: maximal response inputs

(c) Unit 19: pooling and space-orientation receptive fields
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(d) Unit 19: maximal response inputs

Figure 6: Examples of learned 3rd and 4th layer features. The icons show the space-orientation receptive fields, and the bars
the pooling strength as in the visualisation of the 2nd layer.

types. A second advantage is that for symmetric condi-
tional noise distributions, a closed form expression for the
conditional noise is not needed, which both enables a wider
choice of distributions and has computational benefits. If the
value of the normalisation constant is not of interest, a third
advantage of the proposed approach is that the intractable
partition function cancels out. Unlike in noise-contrastive
estimation, there is thus never a need to introduce an addi-
tional parameter for the scaling of the model.

We provided theoretical and empirical arguments that CNCE
provides a consistent estimator and proved that score match-
ing emerges as a limiting case. As score matching makes
more stringent assumptions but does not rely on sampling,
it is an open question whether we can use this result to
e.g. devise a hybrid approach where parts of the model are
automatically estimated with the more suitable method.

We further found that the relative performances of NCE
and CNCE are model dependent, but that CNCE has an

advantage in the important case where the data lie in a lower
dimensional manifold.

An inherent limitation of empirical comparisons, and hence
also those performed here, is that the results depend on
the models and noise distributions used. However, given
the adaptive nature of CNCE, simple Gaussian conditional
noise distributions are likely widely useful, as exemplified
by our results on unsupervised deep learning of a neural
image model.

The proposed method further allows one to iteratively adapt
the conditional noise distribution to make the classification
task successively more challenging, as it was done in some
simulations for NCE (Gutmann & Hyvärinen, 2010), and
generally for learning in generative latent variable models
(Gutmann et al., 2014; Goodfellow et al., 2014). This is an
interesting direction of future work on CNCE.
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A Proof of nonparametric estimation theorem

We here prove the consistency theorem for nonparametric estimation. Additionally, an extension
to the theorem where the condition X = Y is relaxed to X ⊆ Y is presented and proved. For this
extended theorem, the following definition is required:

pextd (u) =

{
pd(u) if u ∈ X
0 if u ∈ Y \ X. (1)

In order to simplify the notation for the proof, the following definitions are introduced,

r(u1,u2) =
pc(u2|u1)

pc(u1|u2)
=

1

r(u2,u1)
, (2)

and

Ω = {(u1,u2) ∈ X× X | pd(u1) > 0 ∧ pc(u1|u2) > 0}. (3)

Furthermore, the following Taylor expansion will be used in the the proof,

log(1 + exp(−(G+ εq))) = log(1 + exp(−G))

− εq exp(−G)

1 + exp(−G)

+
ε2q2

2

exp(−G)

(1 + exp(−G))2

+O(ε3).

(4)

Using these new definitions, the extended theorem reads:
Theorem (Nonparametric estimation ext.). Let G : U× U→ R be a function of the form

G(u1,u2) = f(u1)− f(u2) + log r(u1,u2), (5)

where f is a function from U to R. Under the assumption X ⊆ Y, J̃ attains a unique minimum at

G∗(u1,u2) = log
pextd (u1)pc(u2|u1)

pextd (u2)pc(u1|u2)
(6)

for (u1,u2) ∈ Ω.
∗Affiliated with KTH Royal Institute of Technology and University of Edinburgh during project timespan.



First, the proof of the theorem of the main article is presented, followed by the extra steps required to
prove the extended theorem.

Proof of Nonparametric estimation. The proof is divided into two parts. First, G∗ is proved to be a
critical point of J̃ by showing that the linear term of the Taylor expansion for J̃ with respect to G is
zero for G∗. In the second part, we prove that G∗ is a minimum and the only extremum by showing
that the quadratic part of the Taylor expansion is strictly positive on the set Ω.

The functional J̃ [G] is expressed as the integral

J̃ [G] = Exy log (1 + exp(−G(x,y))) (7)

=

∫

X×Y
log (1 + exp(−G(x,y))) pd(x)pc(x|y)dxdy. (8)

Inserting Equation (5), we obtain the functional

J̃f [f ] = Exy log (1 + exp(f(y)− f(x) + log r(x,y)))

=

∫

X×Y
log (1 + exp(f(y)− f(x) + log r(x,y))) pd(x)pc(x|y)dxdy.

(9)

Now consider an arbitrary perturbation ψ : U→ R of f

J̃f [f + εψ] = Exy log (1 + exp [f(y) + εψ(y)− f(x)− εψ(x) + log r(x,y)]) (10)

=

∫

X×Y
log (1 + exp [−(G(x,y) + ε(ψ(x)− ψ(y)))]) pd(x)pc(x|y)dxdy. (11)

The perturbation of J̃f [f ] corresponds to the following perturbation of J̃ [G],

J̃ [G+ ε(ψ(x)− ψ(y))] = Exy log (1 + exp[−(G(x,y) + ε(ψ(x)− ψ(y)))]) . (12)

Using the Taylor expansion from Equation (4) gives

J̃ [G+ ε(ψ(x)− ψ(y))] = Exy log(1 + exp(−G(x,y)))

− εExy(ψ(x)− ψ(y))
exp(−G(x,y))

1 + exp(−G(x,y))

+
ε2

2
Exy(ψ(x)− ψ(y))2

exp(−G(x,y))

(1 + exp(−G(x,y)))2

+O(ε3).

(13)

Equating the 1st order term with 0 lets us find a necessary condition for the optimal G,

0 = Exy(ψ(x)− ψ(y))
exp(−G(x,y))

1 + exp(−G(x,y))
(14)

=

∫

X×Y
ψ(x)

exp(−G(x,y))

1 + exp(−G(x,y))
pd(x)pc(y|x)dxdy

−
∫

X×Y
ψ(y)

exp(−G(x,y))

1 + exp(−G(x,y))
pd(x)pc(y|x)dxdy

(15)

We now make a change of variables. For the first term in Equation (15) we write u for x and v for y
while for the second term we use the transform

T2 :

(
u
v

)
=

(
0 1
1 0

)(
x
y

)
(16)

det

(
0 1
1 0

)
= −1 (17)

T2(X× Y) = Y× X. (18)
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In the resulting equation, the integrals for the two terms are taken over different domains,

0 =

∫

X×Y
ψ(u)

exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫

Y×X
ψ(u)

exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv.

(19)

For the first theorem we assume Y = X so that

0 =

∫

X×X
ψ(u)

exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫

X×X
ψ(u)

exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

(20)

=

∫

X×X
ψ(u)

(
exp(−G(u,v))pd(u)pc(v|u)

1 + exp(−G(u,v))

−exp(−G(v,u))pd(v)pc(u|v)

1 + exp(−G(v,u))

)
dudv

(21)

Since Equation (21) should hold for any ψ on X× X, the factor in the parenthesis must equal 0. The
factor can be expanded by inserting the assumed form of G, see Equation (5),

exp(−G(u,v))pd(u)pc(v|u)

1 + exp(−G(u,v))
=

exp(−G(v,u))pd(v)pc(u|v)

1 + exp(−G(v,u))
(22)

pd(u)pc(v|u)

exp(G(u,v)) + 1
=

pd(v)pc(u|v)

exp(G(v,u)) + 1
(23)

pd(u)pc(v|u)

exp(f(u)− f(v))r(u,v) + 1
=

pd(v)pc(u|v)

exp(f(v)− f(u))r(v,u) + 1
(24)

exp(f(v))pd(u)pc(v|u)

exp(f(u))r(u,v) + exp(f(v))
=

exp(f(u))pd(v)pc(u|v)

exp(f(v))r(v,u) + exp(f(u))
(25)

Using r(v,u) = 1/r(u,v) from Equation (2), a factor can be taken out of the denominator of the
r.h.s,

exp(f(v))pd(u)pc(v|u)

exp(f(u))r(u,v) + exp(f(v))
=

1

r(v,u)

exp(f(u))pd(v)pc(u|v)

exp(f(v)) + exp(f(u))r(u,v)
(26)

exp(f(v))pd(u)pc(v|u) =
1

r(v,u)
exp(f(u))pd(v)pc(u|v) (27)

exp(f(v))pd(u)pc(v|u) =
pc(v|u)

pc(u|v)
exp(f(u))pd(v)pc(u|v). (28)

Now consider only the set Ω where both sides in the above equation are not trivially zero,

exp(f(v))pd(u) = exp(f(u))pd(v) (29)
pd(u)

exp(f(u))
=

pd(v)

exp(f(v))
= Z (30)

f∗(u) = log pd(u)− logZ (31)
G∗(u1,u2) = log pd(u1)− log pd(u2) + log r(u1,u2). (32)

The first part of the proof is now completed as G∗ in Equation (32) is a critical point of J̃ .

It is straightforward to show that G∗ is minimising J̃ and is the only extreme point. By considering
the second order term of the Taylor expansion in Equation (13),

Exy(ψ(x)− ψ(y))2
exp(−G(x,y))

(1 + exp(−G(x,y)))2
, (33)

we observe that it is positive for all non-constant perturbations ψ. Since constant perturbations of f
does not change G, it can be concluded that Equation (32) describes a minimum and the only extreme
point on the set Ω. �
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Proof of Nonparametric estimation ext.. We can follow the previous proof until Equation (19), just
after the change of variables. We now observe the following

X× Y = (X ∩ Y)× (X ∩ Y) ∪ (X \ Y)× (X ∩ Y)

∪ (X ∩ Y)× (Y \ X) ∪ (X \ Y)× (Y \ X)
(34)

The assumption X ⊆ Y implies (X \ Y) = ∅ and (X ∩ Y) = X. Therefore,

X× Y =
(

(X ∩ Y)× (X ∩ Y)
)
∪
(

(X ∩ Y)× (Y \ X)
)

(35)

=
(
X× X

)
∪
(
X× (Y \ X)

)
, (36)

and similarly

Y× X =
(
X× X

)
∪
(

(Y \ X)× X
)
. (37)

It is now possible to reevaluate Equation (19),

0 =

∫

X×X
ψ(u)

exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

+

∫

X×(Y\X)
ψ(u)

exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫

X×X
ψ(u)

exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

−
∫

(Y\X)×X
ψ(u)

exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

(38)

0 =

∫

X×X
ψ(u)

(
exp(−G(u,v))pd(u)pc(v|u)

1 + exp(−G(u,v))

−exp(−G(v,u))pd(v)pc(u|v)

1 + exp(−G(v,u))

)
dudv

+

∫

X×(Y\X)
ψ(u)

exp(−G(u,v))

1 + exp(−G(u,v))
pd(u)pc(v|u)dudv

−
∫

(Y\X)×X
ψ(u)

exp(−G(v,u))

1 + exp(−G(v,u))
pd(v)pc(u|v)dudv

(39)

Following the previous proof,

G(u1,u2) = log pd(u1)− log pd(u2) + log r(u1,u2) (40)

will set the first term of Equation (39) to 0. By using the expanded data distribution pextd from
Equation (1) in place of pd, we find

G∗(u1,u2) = log pextd (u1)− log pextd (u2) + log r(u1,u2). (41)

Since G∗ becomes arbitrarily large on X× (Y \ X), the second and third terms of Equation (39) are
0. Again, the second order term is positive for all non-constant perturbations ψ on the set Ω. �

B Proof of connection to score matching

Proof of Connection to score matching. We here assume that y = x + εξ where ξ is a vector of
uncorrelated random variables of mean zero and variance one that are independent from x and have a
symmetric density.

Since ξ has a symmetric density, pc is symmetric and cancels in the definition of G(u1,u2;θ),

G(u1,u2;θ) = log
φ(u1;θ)pc(u2|u1)

φ(u2;θ)pc(u1|u2)
= log φ(u1;θ)− log φ(u2;θ). (42)

4



The loss function thus is

J (θ) = 2Exy log [1 + exp(−G(x,y;θ))] (43)
= 2Exy log [1 + exp (− log φ(x;θ) + log φ(y;θ))]

= 2Exξ log [1 + exp (− log φ(x;θ) + log φ(x + εξ;θ))] (44)

Let us denote the log unnormalised model log φ(·;θ) by fθ(·) so that

J (θ) = 2Exξ log [1 + exp (−fθ(x) + fθ(x + εξ))] (45)

By assumption ε is small so that for any fixed value of ξ, we have

fθ(x + εξ) =fθ(x) + ε∇xfθ(x)T ξ +
ε2

2
ξTHθ(x)ξ +O(ε3) (46)

where Hθ(x) is the Hessian with elements ∂xi
∂xj

fθ(x). We thus obtain

J (θ) = 2Exξ log

[
1 + exp

(
ε∇xfθ(x)T ξ +

ε2

2
ξTHθ(x)ξ +O(ε3)

)]
(47)

The function log(1 + exp(v)) has the following Taylor expansion around v = 0,

log(1 + exp(v)) = log(2) +
1

2
v +

1

8
v2 +O(v3), (48)

so that

J (θ) = 2Exξ

[
log(2) +

1

2
ε∇xfθ(x)T ξ +

ε2

4
ξTHθ(x)ξ +O(ε3)

]
+

2Exξ

[
1

8

(
ε∇xfθ(x)T ξ +

ε2

2
ξTHθ(x)ξ +O(ε3)

)2]
. (49)

Squaring the term
(
ε∇xfθ(x)T ξ + ε2

2 ξ
THθ(x)ξ +O(ε3)

)2

gives ε2(∇xfθ(x)T ξ)2 +O(ε3) so

that

J (θ) = 2Exξ

[
log(2) +

1

2
ε∇xfθ(x)T ξ +

ε2

4
ξTHθ(x)ξ +

1

8
ε2(∇xfθ(x)T ξ)2

]
+O(ε3) (50)

By assumption, x and ξ are independent, and Eξξ = 0, so that we have

J (θ) = 2ExEξ

[
log(2) +

ε2

4
ξTHθ(x)ξ +

1

8
ε2(∇xfθ(x)T ξ)2

]

+O(ε3) (51)

Furthermore, with Eξξξ
T being equal to the identity matrix 1, we have

Eξξ
THθ(x)ξ = Eξ tr

[
Hθ(x)ξξT

]
(52)

= tr
[
Hθ(x)Eξξξ

T
]

(53)

= trHθ(x). (54)

Similarly, we obtain

Eξ(∇xfθ(x)T ξ)2 = Eξξ
T∇xfθ(x)∇xfθ(x)T ξ (55)

=Eξ tr
[
∇xfθ(x)∇xfθ(x)T ξξT

]
(56)

= tr
[
∇xfθ(x)∇xfθ(x)TEξξξ

T
]

(57)

= tr
[
∇xfθ(x)∇xfθ(x)T

]
(58)

=||∇xfθ(x)||22. (59)
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With both identities plugged into (51), we can write J (θ) as

J (θ) =
ε2

2
Ex

[
trHθ(x) +

1

2
||∇xfθ(x)||22

]
+ 2 log(2) +O(ε3). (60)

Since trHθ(x) equals the sum of the second derivatives of fθ(x) = log φ(x;θ),

trHθ(x) =
∑

i

∂2fθ(x)

∂x2i
(61)

the term in the brackets is the loss function that is minimised in score matching, which completes the
proof. �

C Empirical validation on non-negative and discrete data

CNCE was also verified on a heavy-tailed distribution of positive data (log-normal) and a discrete
distribution (Bernoulli).

The log-normal distribution is a univariate continuous heavy-tailed distribution that is defined to
have its samples normal distributed in the log domain. Consequently, it is only defined on the positive
real axis X = R+. For this reason, the log-normal distribution is suitable to illustrate the fact that
only X ⊆ Y is required for CNCE given that the conditional noise distribution pc defined in the main
paper generates noise samples in Y = R. We used the following unnormalised log-normal model
defined over the whole real axis

log φ(u; θ, C) =

{− θ2 (log u)2 − log u if u > 0

C if u ≤ 0
(62)

where θ, C ∈ R. On the positive axis, the model is proportional to a log-normal distribution with
mean zero in the log domain and with precision θ. On the negative axis, the model assumes the
constant value C. In theory, the optimal value of C would be −∞. Since this can never be reached in
practice, we only measured the estimation error for θ as the absolute error between true and estimated
parameter.

The Bernoulli model defines a simple probability mass function for a binary random variable taking
values on X = {0, 1}. In the normalised version, the Bernoulli model only has one free parameter.
Here, an unnormalised version with two free parameters θ1, θ2 ∈ R+ is used,

log φ(u; θ1, θ2) =

{
log θ1 if u = 0

log θ2 if u = 1.
(63)

The use of two free parameters means that there exist an infinite set of equivalent model parameters
which only differs from (θ1, θ2) by a scaling factor. Consequently, to measure the error for a parameter
estimate of the Bernoulli model, i.e. θ̂ = (θ̂1, θ̂2), we normalised the parameters before computing
the estimation error as ‖(θ̂1 + θ̂2)−1θ̂−θ∗‖2, where θ∗ = (θ∗1 , θ

∗
2) denotes the true parameter values

(which are related by θ∗2 = 1− θ∗1).

The discrete conditional noise distribution defined by Equation (64) was used for the Bernoulli model.
Again ε controls the similarity between data and noise, but with the added restriction ε ∈ [0, 1].

pBerc (y|x; ε) =

{
1− ε if y = x

ε if y 6= x,
(64)

D Supplemental feature visualisations

D.1 Neural network layer sizes

The sizes of the four layers are provided in Table 1. Note that the dimensionality of the data was
reduced by four using PCA as part of the gain control between the 2nd and 3rd layers.

6



2 2.5 3 3.5 4 4.5
Sample size log10 N

-5

-4

-3

-2

-1

0

lo
g
10

sq
E
rr

or

CNCE2
CNCE6
CNCE20
MLE

(a) Log-normal model.
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(b) Bernoulli model.

Figure 1: Empirical validation of consistency for CNCE. The x-axis shows the sample size in the
log10 domain, the y-axis the squared estimation error in the log10 domain. The solid lines show the
median result across 100 different simulations, and the dashed lines are the 0.1 and 0.9 quantiles. For
each of the 100 simulations, a new random set of parameters were used to generate the data. The
different coloured and marked lines correspond to different values of κ for CNCE and the black line
to the MLE results.

Table 1: Neural network input and output dimensions.

Layer Input D(L) Output K(L)

1 600 600
2 600 200

Intermediate gain control
3 196 60
4 60 30

D.2 CNCE and NCE 1st layer features comparison

In addition to the quantitative comparisons between CNCE and NCE, which were presented in Section
3 of the main paper, it is desirable to evaluate qualitative differences between the methods. To this
end we compared the easily interpretable 1st layer features at different stages of training with the aim
to determine qualitative differences between learned features and if learning is faster for one method
or the other.

Figure 2 shows the common initialisation and Figures 3 to 13 one hundred 1st layer features at the
end of the first eleven meta-iterations. Each meta-iteration consists of ten gradient steps after which
new noise samples are generated. The methods seem to learn similar features and for this model,
while we do not want to claim superior performance given the qualitative nature of the comparison,
CNCE does appear to learn slightly faster than NCE.

D.3 3rd layer features

All 60 3rd layer space-orientation receptive fields and maximal response patches are shown in Figures
14 to 17.

D.4 4th layer features

All 30 4th units are visualised in Figures 18 to 47 in the same manner as in the main text.
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(a) CNCE (b) NCE

Figure 2: The common initialisation for the 100 1st later features used for the qualitative comparison
between CNCE and NCE.

(a) CNCE (b) NCE

Figure 3: A sample of the 1st layer features after 1 meta-iteration.

(a) CNCE (b) NCE

Figure 4: A sample of the 1st layer features after 2 meta-iterations.
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(a) CNCE (b) NCE

Figure 5: A sample of the 1st layer features after 3 meta-iterations.

(a) CNCE (b) NCE

Figure 6: A sample of the 1st layer features after 4 meta-iterations.

(a) CNCE (b) NCE

Figure 7: A sample of the 1st layer features after 5 meta-iterations.
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(a) CNCE (b) NCE

Figure 8: A sample of the 1st layer features after 6 meta-iterations.

(a) CNCE (b) NCE

Figure 9: A sample of the 1st layer features after 7 meta-iterations.

(a) CNCE (b) NCE

Figure 10: A sample of the 1st layer features after 8 meta-iterations.
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(a) CNCE (b) NCE

Figure 11: A sample of the 1st layer features after 9 meta-iterations.

(a) CNCE (b) NCE

Figure 12: A sample of the 1st layer features after 10 meta-iterations.

(a) CNCE (b) NCE

Figure 13: A sample of the 1st layer features after 11 meta-iterations.

11



(a) (b) (c) (d)

Figure 14: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 1 to 8, and (c) and (d) 9 to 16.
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(a) (b) (c) (d)

Figure 15: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 17 to 24, and (c) and (d) 25 to 32.

13



(a) (b) (c) (d)

Figure 16: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 33 to 40, and (c) and (d) 41 to 48.
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(a) (b) (c) (d)

Figure 17: Each row pair of one receptive field and one icon represent a 3rd layer unit. (a) and (b)
show units 49 to 56, and (c) and (d) 57 to 60.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 18: The estimation for unit 1 in the 4th layer. (a) shows the learned pooling of the 3rd layer
units and (b) shows 30 image patches that produced maximal responses for a batch of 10000 inputs.
For the space-orientation receptive fields, the bar beneath each icon indicates the relative size of the
4th weight, i.e. q(4)1,k/maxk q

(4)
1,k. The receptive fields shown account for 90% of the sum of the weight

vector. The thin bars beneath each image patch indicate the response strength relative to the patch
with the maximal response.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 19: Unit 2 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 20: Unit 3 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 21: Unit 4 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 22: Unit 5 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 23: Unit 6 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 24: Unit 7 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 25: Unit 8 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 26: Unit 9 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 27: Unit 10 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 28: Unit 11 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 29: Unit 12 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 30: Unit 13 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 31: Unit 14 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 32: Unit 15 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 33: Unit 16 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 34: Unit 17 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 35: Unit 18 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 36: Unit 19 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 37: Unit 20 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 38: Unit 21 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 39: Unit 22 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 40: Unit 23 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 41: Unit 24 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 42: Unit 25 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 43: Unit 26 in the 4th layer, visualised as in Figure 18.
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(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 44: Unit 27 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 45: Unit 28 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 46: Unit 29 in the 4th layer, visualised as in Figure 18.

(a) Pooling and space-orientation receptive fields.  2  4  6  8 10

2

(b) Maximal response inputs.

Figure 47: Unit 30 in the 4th layer, visualised as in Figure 18.
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