
Scalable Unsupervised Feature Selection with Reconstruction
Error Guarantees via QMR Decomposition

Ciwan Ceylan
ciwan@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Kambiz Ghoorchian
kambiz.ghoorchian@seb.se

SEB Group
Stockholm, Sweden

Danica Kragic
dani@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden

Abstract
Unsupervised feature selection (UFS) methods have garnered signif-
icant attention for their capability to eliminate redundant features
without relying on class label information. However, their scalabil-
ity to large datasets remains a challenge, rendering common UFS
methods impractical for such applications. To address this issue, we
introduce QMR-FS, a greedy forward filtering approach that selects
linearly independent features up to a specified relative tolerance,
ensuring that any excluded features can be reconstructed from the
retained set within this tolerance. This is achieved through the
QMR matrix decomposition, which builds upon the well-known QR
decomposition. QMR-FS benefits from linear complexity relative
to the number of instances and boasts exceptional performance
due to its ability to leverage parallelized computation on both CPU
and GPU. Despite its greedy nature, QMR-FS achieves comparable
classification and clustering accuracies across multiple datasets
when compared to other UFS methods, while achieving runtimes
approximately 10 times faster than recently proposed scalable UFS
methods for datasets ranging from 100 million to 1 billion elements.

CCS Concepts
• Computing methodologies → Feature selection; Unsuper-
vised learning.

Keywords
Unsupervised learning, Feature selection, Scalability, Linear inde-
pendence
ACM Reference Format:
Ciwan Ceylan, Kambiz Ghoorchian, and Danica Kragic. 2024. Scalable Un-
supervised Feature Selection with Reconstruction Error Guarantees via
QMR Decomposition. In Proceedings of the 33rd ACM International Con-
ference on Information and Knowledge Management (CIKM ’24), October
21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3627673.3679994

1 Introduction
Unsupervised feature selection (UFS) involves extracting a subset of
features from a dataset by eliminating redundant ones without rely-
ing on task-specific information, such as class labels. The removal
of redundant features offers several inherent benefits: it facilitates

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679994

data visualization and understanding, reduces measurement and
storage requirements, and decreases training and utilization times
[10, 25]. Additionally, feature selection can enhance the perfor-
mance of downstream tasks, such as clustering, by mitigating the
curse of dimensionality [10, 13, 22].

UFS methods are categorized into two main types: wrapper and
filter methods [25]. Wrapper methods rely on an external task
algorithm, such as a clustering algorithm, to evaluate feature im-
portance, whereas filter methods use only the intrinsic properties
of the features and dataset. Filter methods are considered faster and
more scalable [10, 25, 26], making them the focus of this work.

Despite being labelled ’fast’, filtering UFS methods often become
inefficient for large datasets [15] due to their quadratic time com-
plexity with respect to the number of instances [11, 18, 31–34],
meaning 𝑛 in an 𝑛 × 𝑑 data matrix with 𝑑 features. This quadratic
complexity makes computation intractable for the datasets that
would benefit most from feature selection in terms of reducing
storage and utilization times. While some methods exhibit linear
complexity in 𝑛 [29, 30], they use iterative schemes that must run
until convergence, which is slow in practice.

To address the lack of scalable UFS methods, we introduce QMR-
FS, a fast feature selection algorithm. QMR-FS employs greedy
forward feature selection, where features are considered one-by-
one in a fixed order, and feature redundancy is measured only with
respect to already selected features. Specifically, QMR-FS uses linear
reconstruction error to measure redundancy, based on the premise
that linearly reconstructable features are redundant [6]. Our QMR
decomposition, an extension of the QR decomposition [12, Ch. 2.1],
computes the reconstruction efficiently by avoiding costly linear
model fitting, ensuring linear complexity in 𝑛, and is optimized for
parallel implementation on both CPU and GPU. Additionally, QMR-
FS guarantees that reconstruction errors are smaller than a specified
tolerance relative to the feature columns’ L2-norm, allowing it to
retain all features if redundancy criteria are not met. Thus, QMR-FS
is suitable for scenarios where the potential for feature removal
without information loss is uncertain.

We demonstrate the scalability of QMR-FS via runtimes around
30 seconds on datasets with up to 7.88 million instances and a total
of 1 billion elements, roughly 10 times faster than recent scalable
UFS methods [15]. Furthermore, the features selected by QMR-FS
exhibit comparable classification accuracy and clustering normal-
ized mutual information (NMI) scores relative to both common and
recent UFS methods, which require significantly longer runtimes.
Code for QMR-FS and our experiments is available online1.

1https://github.com/ciwanceylan/qmr-feature-selection
This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

3658

https://orcid.org/0000-0002-8044-4773
https://orcid.org/0000-0003-1007-8533
https://orcid.org/0000-0003-2965-2953
https://doi.org/10.1145/3627673.3679994
https://doi.org/10.1145/3627673.3679994
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627673.3679994
https://github.com/ciwanceylan/qmr-feature-selection
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679994&domain=pdf&date_stamp=2024-10-21

CIKM ’24, October 21–25, 2024, Boise, ID, USA Ciwan Ceylan, Kambiz Ghoorchian, & Danica Kragic

2 Method
We now describe how our QMR-FS method performs scalable fea-
ture selection on a data matrix with 𝑛 instances and 𝑑 features, X ∈
R𝑛×𝑑 . Since our focus is on scalability to large 𝑛, we limit this paper
to the case 𝑛 ≥ 𝑑 and relegate the opposite case to future work.

QMR-FS performs greedy forward feature selection, consider-
ing features from left to right in X, with the decision to retain a
feature based on the previously retained features. The guiding prin-
ciple is that of linear independence. We say that a feature column
x𝑗 ∈ X is linearly dependent on previous feature columns if it can
be expressed as a linear combination of them, plus a constant term,

x𝑗 =
𝑗−1∑︁
𝑘=1

𝑎𝑘 x𝑘 +𝑏1𝑛, (1)

where 𝑎𝑘 and 𝑏 are coefficients, and 1𝑛 is a length 𝑛 vector of all
ones. This is expressed concisely as x𝑗 ∈ span(x1, . . . , x𝑗−1, 1𝑛).
Conversely, if such 𝑎𝑘 and 𝑏 do not exist, x𝑗 is linearly independent,
x𝑗 ∉ span(x1, . . . , x𝑗−1, 1𝑛), and should be retained.

To determine the independence of x𝑗 without having to explicitly
find 𝑎𝑘 and 𝑏 through expensive linear model fitting, we make use
of the following lemma, central to our method.

Lemma 2.1. Let X ∈ R𝑛×𝑑 and Rref ∈ R𝑑×𝑑 satisfy X = URref
and Rref = U† X, where Rref is in row echelon form (REF), and U ∈
R𝑛×𝑑 has full rank and the left-side inverse U† ∈ R𝑑×𝑛 . Then x𝑗 ∈
span(x1, . . . , x𝑗−1) iff r𝑗 ∈ span(r1, . . . , r𝑗−1) for any 𝑗 > 1 where
x𝑗 ∈ R𝑛 is the 𝑗 th column inX, and r𝑗 ∈ R𝑑 is the 𝑗 th column in Rref.

Proof. We first show that x𝑗 ∈ span(x1, . . . , x𝑗−1) =⇒
r𝑗 ∈ span(r1, . . . , r𝑗−1). In this case, we can assume ∃ 𝑎𝑖, 𝑗 ∈ R s.t.
x𝑗 =

∑𝑗−1
𝑖=1 𝑎𝑖, 𝑗 x𝑖 . From X = URref, we know that x𝑖 = U r𝑖 . Thus,

U r𝑗 = x𝑗 =
𝑗−1∑︁
𝑖=1

𝑎𝑖, 𝑗 x𝑖 =
𝑗−1∑︁
𝑖=1

𝑎𝑖, 𝑗 U r𝑖 = U
𝑗−1∑︁
𝑖=1

𝑎𝑖, 𝑗 r𝑖 .

Multiplication with U† completes the first part of the proof,

r𝑗 = U† U
𝑗−1∑︁
𝑖=1

𝑎𝑖, 𝑗 r𝑖 =
𝑗−1∑︁
𝑖=1

𝑎𝑖, 𝑗 r𝑖 .

Next, r𝑗 ∈ span(r1, . . . , r𝑗−1) =⇒ x𝑗 ∈ span(x1, . . . , x𝑗−1) is
proved with a block matrix representation of X = URref as aid,

x1 ... x𝑗91 x𝑗 ... x𝑑

©«
ª®®®®¬
= u1 ... uℎ ... u𝑑

©«
ª®®®®¬

𝑟1,1 𝑟1,2 ... 𝑟1, 𝑗91 𝑟1, 𝑗 ... 𝑟1,𝑑
𝑟2,2

𝑟ℎ,𝑗91 𝑟ℎ,𝑗
...

©«
ª®®®¬ . (2)

Here, ℎ is the rank of the first 𝑗 − 1 columns in X, which coin-
cide with the number of rows with pivot elements before column
𝑗 in Rref. Since Rref is in REF, ℎ ≤ 𝑗 − 1, and by the assumption
r𝑗 ∈ span(r1, ..., r𝑗−1) we know that r𝑗 cannot have pivot elements.

We know that x𝑗 =
∑ℎ
𝑖=1 u𝑖 𝑟𝑖, 𝑗 (orange and brown in Eq. (2)),

and we wish to express u𝑖 using columns in X. To do so, we look at
the block equation highlighted in blue and brown blocks in Eq. (2),

X:,1:𝑗−1 = U:,1:ℎ Rref1:ℎ,1:𝑗−1 . (3)

If ℎ > 0, the block matrix Rref1:ℎ,1:𝑗−1 ∈ Rℎ× 𝑗−1 has pivot el-
ements in every row by construction (REF), meaning that it has

full row rank. Therefore, it has the right-side inverse P ∈ R𝑗−1×ℎ

such that Rref1:ℎ,1:𝑗−1 P = Iℎ×ℎ [23, Ch. 2.1]. Consequently, we can
rewrite Eq. (3) by multiplying with P from the right:

X:,1:𝑗−1 P = U:,1:ℎ Rref1:ℎ,1:𝑗−1 P =⇒ U:,1:ℎ = X:,1:𝑗−1 P.

Thus, the first ℎ columns in U can be expressed using the first 𝑗 − 1
columns in X as u𝑖 =

∑𝑗−1
𝑘=1 x𝑘 𝑃𝑘.𝑖 , for 𝑖 ∈ {1, . . . , ℎ}. Inserting this

into x𝑗 =
∑ℎ
𝑖=1 u𝑖 𝑟𝑖, 𝑗 gives

x𝑗 =
ℎ∑︁
𝑖=1

𝑗−1∑︁
𝑘=1

x𝑘 𝑃𝑘,𝑖𝑟𝑖, 𝑗 =
𝑗−1∑︁
𝑘=1

x𝑘
ℎ∑︁
𝑖=1

𝑃𝑘,𝑖𝑟𝑖, 𝑗 =

𝑗−1∑︁
𝑘=1

𝑐𝑘,𝑗 x𝑘 , (4)

where 𝑐𝑘,𝑗 =
∑ℎ
𝑖=1 𝑃𝑘,𝑖𝑟𝑖, 𝑗 . Thus, for ℎ > 0, we have shown that

r𝑗 ∈ span(r1, . . . , r𝑗−1) =⇒ x𝑗 ∈ span(x1, . . . , x𝑗−1).
The case ℎ = 0 corresponds to a trivial case as it requires all

columns of Rref with index smaller than 𝑗 to consist of zeros. Con-
sequently, all columns vectors of X up to and including 𝑗 must also
consist of zeros, meaning that x𝑗 ∈ span(x1, . . . , x𝑗−1) trivially. □

By this lemma, the linearly independent columns in X corre-
spond to the linearly independent columns in Rref, which can be
easily identified by finding the pivot elements. However, the lemma
requires a matrix decomposition of the form X = URref, where U
has a left-side inverse andRref is in REF. The well-known QR decom-
position X = QR is a good starting point as the matrix Q ∈ R𝑛×𝑑

has orthonormal columns, so Q⊺ is its left-side inverse [12, Ch. 2.1].
Yet R ∈ R𝑑×𝑑 is only upper-triangular, not in REF.

Therefore, we put forward the QMR decomposition. The matrix
R is further decomposed as R = MRref using Gaussian elimination,
such that Rref ∈ R𝑑×𝑑 is in REF, and M ∈ R𝑑×𝑑 is an invert-
ible matrix composed of inverted row reduction operations [9, Ch.
3.2]. That is, M = M91

𝐾
...M91

2 M91
1 , where each M𝑘 is one of three

invertible operations: row swap, addition of two rows, and mul-
tiplication of a row with a nonzero value [9, Ch. 3.2.6]. Thus, we
have X = QMRref, with U = QM having the left-side inverse
U† = M−1 Q⊺ , fulfilling the criteria of Lemma 2.1. Computation of
M and Rref is implemented using outer product Gaussian elimina-
tion [9, Ch. 3.2.8], see lines 12 to 15 in Alg.1.

In practice, exact linear independence can be too strict, leading to
more features being retained than desired. To address this, QMR-FS
removes features with small reconstruction errors. Let S̄ be the list
of retained column indices, and letX:,S̄ denote the matrix of retained
feature columns. We write x𝑗 = 𝝌𝑗 + 𝜹 𝑗 , where 𝝌𝑗 = X:,S̄ c denotes
a reconstruction of x𝑗 using X:,S̄ with the coefficient vector c, and
𝜹 𝑗 is a residual error vector. Then x𝑗 is removed if ∥𝜹 𝑗 ∥2 ≤ 𝜃 ∥ x𝑗 ∥2,
where 𝜃 ∈ [0, 1] is the relative tolerance. While c and 𝜹 𝑗 can be
computed via least-squares fitting, this approach is computationally
expensive. Instead, we use a closed-form formula for 𝜹 𝑗 , which
provides an upper bound on the reconstruction error.

To derive the formula for 𝜹 𝑗 , consider Alg. 1 at the start of
iteration 𝑗 , with 𝑝 = | S̄ | + 1. By the QMR decomposition, we have
x𝑗 = QM:,1:𝑗 R1:𝑗, 𝑗 , which we can split into two terms:

x𝑗 = QM:,1:𝑝91 R1:𝑝91, 𝑗 +QM:,𝑝 :𝑗 R𝑝 :𝑗, 𝑗 . (5)
Note that the first term is a linear combination of the first 𝑝 − 1
column vectors of the matrix QM, while the second term linearly
combines the next 𝑗 − 𝑝 + 1 column vectors. We next show that
these two terms correspond to 𝝌𝑗 and 𝜹 𝑗 as defined above.

3659

Scalable Unsupervised Feature Selection with Reconstruction Error Guarantees via QMR Decomposition CIKM ’24, October 21–25, 2024, Boise, ID, USA

To see this, we show that the first term in Eq. (5) corresponds to a
linear combination of the columns in X:,S̄. Let R′ = R1:𝑝91,S̄ denote
the submatrix consisting of the first 𝑝−1 rows of R and the columns
with indices in S̄. By the algorithm’s construction, R′ is in REF with
full row rank, meaning R′ has the right-side inverse 𝑷 [23, Ch. 2.1].
Moreover, it holds that X:,S̄ = QM:,1:𝑝91 R′. To see why, first note
that it is valid for 𝑗 = 0. Next, observe that it is preserved through
each iteration asM,R, 𝑝 , and S̄ are updated. Consider the two scenar-
ios addressed by the if-statement on line 9. If the condition evaluates
to False, Gaussian elimination proceeds normally, preserving the
equation by construction. If the condition evaluates to True, the
elements R𝑝 :𝑗, 𝑗 are set to zero, ensuring that column 𝑗 has no pivot
elements in Rref. Importantly, since the elements in R𝑝 :𝑗, 𝑗 are not
used in subsequent iterations for updatingM, and 𝑗 was not added to
S̄, the equality X:,S̄ = QM:,1:𝑝91 R′ remains valid. Combining these
facts, we see that QM:,1:𝑝91 = X:,S̄ 𝑷 . Therefore, the first term in
Eq. (5) equals 𝝌𝑗 , QM:,1:𝑝91 R1:𝑝91, 𝑗 = X:,S̄ 𝑷 R1:𝑝91, 𝑗 = X:,S̄ c = 𝝌𝑗 ,
meaning that the second term equals 𝜹 𝑗 .

Three additional aspects of QMR-FS require attention. First, due
to its greedy selection approach, QMR-FS is biased towards the
initial feature ordering in X, which results in features further to the
left being more likely to be retained. Therefore, QMR-FS benefits
from a good initial ordering of the features. If prior knowledge
about feature importance is available, it should be used to establish
the initial ordering. In other cases, we propose ordering features by
their Shannon entropy [5, Ch. 2.1] (line 2). This heuristic is moti-
vated by previously suggested entropy measures for UFS [7, 10, 28].
However, we acknowledge that improving the initial ordering is an
important direction for future work on QMR-FS. Second, to account
for the constant term in Eq. 1, we prepend 1𝑛 to X (line 3 in Alg. 1).
Finally, the time complexity of QMR-FS is O(𝑛𝑑2), dominated by
line 8 and the QR decomposition [9, Ch. 5.2.2].

Algorithm 1: The QMR-FS algorithm with 1 based indexing. Inputs:
Data matrix X ∈ R𝑛×𝑑 and tolerance threshold 𝜃 ∈ [0, 1].
1 def qmr_fs(X, 𝜃):
2 X = sort_columns_by_entropy(X, ’descending’)
3 X = [1𝑛,X] # Prepend column with constant value.

4 Q,R = qr_decomposition(X)
5 M = I𝑑×𝑑 # Initialize M as the identity matrix.

6 S̄ = list(), 𝑝 = 1 # Initialize S̄ and 𝑝.

7 for 𝑗 in range(1,R.shape[1]):
8 𝜹 𝑗 = QM[:, p:j]R[p:j, j] # Formula provided by Eq. (5).
9 if ∥𝜹 𝑗 ∥2 ≤ 𝜃 ∥ x𝑗 ∥2:

10 R[p:j, j] = 0 # Ensure no privot elements.

11 else:
Gaussian elimination on column 𝑗 from row 𝑝.

12 𝝆 = R[p+1:j, j]/R[p, j] # [(𝑗 −𝑝−1) × 1]
13 R[p+1:j, :] −= 𝝆 ⊗ R[p, :] # [(𝑗 −𝑝−1) × 𝑑]
14 M[:, p] += M[:, p+1:j]·𝝆 # [𝑑 × 1]
15 𝑝 += 1 # Increment pivot counter.

16 S̄ .append(𝑗) # Add feature 𝑗 to selected set.

17 S̄ .remove(1) # Remove constant value column.

18 return X[:, S̄]

3 Experiments
We conduct two sets of experiments to demonstrate the effective-
ness of QMR-FS. First, we showcase its scalability by applying it
to four large datasets: US Census (1990) [21], GitHub MUSAE [24],
SNAP patents [17], and KDDCUP (1999) [27]. The results are shown
in Tbl. 1. Notably, QMR-FS completes in just over 30 seconds on
a CPU (16 vCPUs @ 2.2 GHz) and 20 seconds on a GPU (Nvidia
L4) for KDDCUP, the largest dataset with over 1 billion elements,
which is 10 times faster than recent scalable UFS methods [14, 15]
with reported runtimes of 200s and 300s on a dataset with about
half as many elements, 𝑛 = 630k and 𝑑 = 900 [15].

In our second experiment, we demonstrate that QMR-FS per-
forms on par with other UFS methods despite its greedy approach.
Following the setup outlined in a recent review and benchmark
paper [25], we evaluate the selected features using SVM classifica-
tion [4] and K-means clustering [2]. For classification, we compute
average accuracies using 5-fold cross-validation with five different
seeds, and for clustering, we compute average normalized mutual
information (NMI) [20, Ch. 16.3] using 25 seeds. We use five datasets
from [25], all from the UCI ML repository [16], and add the popular
Isolet dataset [3, 8, 19]. Dataset details are provided in Tbl. 2.

Following [25], we use SVD-entropy [28], LS [11], SPEC [34],
USFSM [26], UDFS [31], and NDFS [18] as comparing UFS meth-
ods. To compensate for excluding methods in [25] without readily
available implementations, we add the recent methods CNAFS [32]
and FMIUFS [33], available in the Matlab UFS toolbox [1]. Each
of these methods outputs a feature ranking and expects a specific
proportion of features to be selected, which differs from QMR-FS,
which automatically selects the number of features based on the
tolerance threshold 𝜃 . To make results comparable, we extract eight
different feature sets from each ranking produced by the baseline
UFS methods, corresponding to 20%-90% of the features. For Isolet,
we use a fixed number of features ranging from 20 to 100 instead
of percentages, as is customary for this dataset [19, 29, 30]. For
QMR-FS, we use multiple values of 𝜃 to obtain a spread over the
number of preserved features.

Examining Fig. 1, we find that QMR-FS is among the top meth-
ods for classification; however, no single method excels across all
settings. The average rank results in Tbl. 2 convey a similar story.
QMR-FS achieves the highest classification ranking and an aver-
age clustering ranking within one standard deviation of the best
method. Overall, the results support our claim that QMR-FS per-
forms comparably to other UFS methods while offering superior
scalability. Finally, the Isolet results in Fig. 1j are notable for QMR-
FS’s significant improvement in accuracy when increasing from
20 to 100 features, suggesting potential for enhancing the initial
feature ordering.
Table 1: QMR-FS runtimes in seconds on four large datasets
using 𝜃 = 0.1, resulting in 𝑑fs selected features.

Num. instances and dims. Runtime (s)

Dataset 𝑛 𝑑 𝑑fs CPU GPU

US Census (1990) 2.46M 68 66 4.16 ± 0.16 2.75 ± 0.11
GitHub MUSAE 37.7K 4006 3799 28.5 ± 0.18 13.9 ± 0.45
Snap Patents 2.92M 269 259 26.4 ± 0.25 13.7 ± 0.06
KDDCUP (1999) 7.88M 127 111 33.9 ± 0.12 20.2 ± 0.06

3660

CIKM ’24, October 21–25, 2024, Boise, ID, USA Ciwan Ceylan, Kambiz Ghoorchian, & Danica Kragic

Table 2: Dataset details (left), and summary of benchmark results (right) using 40% and 60% kept features following [25] (#50 and
#100 for Isolet). The average ranks and standard deviations for classification and clustering are computed over the 6 datasets.
The time complexities are simplified under the assumption 𝑛 ≥ 𝑑 , and ∗ indicates methods which are iterated until convergence.
Relative runtimes are displayed for Isolet, the largest dataset the baseline UFS methods scale to.

Dataset 𝑛 𝑑 # classes
Automobile 205 25 6
Heart-C 303 13 5
Heart-statlog 270 13 2
Sonar 208 60 2
Wine 178 13 3
Isolet 1560 617 26

QMR-FS SVD Ent. LS SPEC USFSM UDFS NDFS CNAFS FMIUFS
Clsif. avg. rank (40%) 2.8 ± 1.8 5.5 ± 2.8 5.8 ± 2.6 8.3 ± 0.5 3.0 ± 2.2 5.5 ± 1.8 4.3 ± 1.9 5.0 ± 1.4 3.7 ± 2.6
Clsif. avg. rank (60%) 2.5 ± 1.6 5.0 ± 1.8 5.7 ± 2.1 6.5 ± 2.6 5.8 ± 2.8 4.7 ± 2.8 3.2 ± 1.7 5.3 ± 3.1 5.2 ± 3.1
Clstr. avg. rank (40%) 3.0 ± 2.2 6.7 ± 2.1 6.5 ± 2.6 7.0 ± 1.7 3.7 ± 2.1 6.0 ± 2.8 3.3 ± 2.3 5.5 ± 1.6 2.8 ± 1.3
Clstr. avg. rank (60%) 5.5 ± 2.9 4.3 ± 2.0 4.8 ± 2.4 7.2 ± 1.3 4.8 ± 2.5 5.5 ± 2.6 3.0 ± 2.7 4.2 ± 3.4 4.8 ± 2.3
Time complexity O(𝑛𝑑2) O (𝑛𝑑3) O (𝑛2𝑑) O (𝑛2𝑑) O (𝑛3𝑑) O (𝑛2𝑑)∗ O(𝑛2𝑑)∗ O(𝑛2𝑑)∗ O(𝑛2𝑑)
Runtime (Isolet) 137ms ×310 ×1.2 ×16 ×22764 ×11 ×44 ×2950 ×13635

Baseline QMR-FS SVD Ent. LS SPEC USFSM UDFS NDFS CNAFS FMIUFS

25 50 75 100
% features kept

0.4

0.5

0.6

Ac
cu

ra
cy

(a) Classification, Automobile

25 50 75 100
% features kept

0.52

0.54

0.56

0.58

0.60

Ac
cu

ra
cy

(b) Classification, Heart-C

25 50 75 100
% features kept

0.10

0.15

0.20

0.25

0.30

N
M

I

(c) Clustering, Automobile

25 50 75 100
% features kept

0.05

0.10

0.15

0.20

0.25

N
M

I

(d) Clustering, Heart-C

25 50 75 100
% features kept

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(e) Classification, Heart-statlog

25 50 75 100
% features kept

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

(f) Classification, Sonar

25 50 75 100
% features kept

0.1

0.2

0.3

N
M

I

(g) Clustering, Heart-statlog

25 50 75 100
% features kept

0.00

0.02

0.04

0.06

0.08

N
M

I
(h) Clustering, Sonar

25 50 75 100
% features kept

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(i) Classification, Wine

20 40 60 80 100
features kept

0.4

0.6

0.8

Ac
cu

ra
cy

(j) Classification, Isolet

25 50 75 100
% features kept

0.4

0.6

0.8

1.0

N
M

I

(k) Clustering, Wine

20 40 60 80 100
features kept

0.4

0.5

0.6

0.7

N
M

I

(l) Clustering, Isolet

Figure 1: Feature selection benchmark results. Each marker shows average SVM classification accuracy (left) or K-means NMI
(right). The shaded areas show the standard error. The solid black lines show the score when 100% of features are used.

4 Conclusion and Future Work
In this paper, we have presented QMR-FS, a scalable unsupervised
feature selection (UFS) method, demonstrating its ability to achieve
classification and clustering accuracies comparable to existing UFS
methods while performing efficiently on large datasets. Despite
these strengths, there are several avenues for further improvement.
Enhancing the initial feature ordering, to which QMR-FS is biased,
holds significant potential. This could be achieved by refining the
feature ordering heuristic or by running QMR-FS with multiple

random orderings and selecting the best order based on total recon-
struction error. Given the speed of QMR-FS, this approach would
not impose substantial computational overhead.

Another research direction involves reducing the bias associated
with feature ordering. For example, QMR-FS could be run itera-
tively, altering the feature order between iterations to reveal feature
reconstruction possibilities not considered with a single ordering.
Additionally, the differentiable nature of the QMR decomposition
opens up exciting possibilities for applications in the deep learning
domain, which we are eager to explore.

3661

Scalable Unsupervised Feature Selection with Reconstruction Error Guarantees via QMR Decomposition CIKM ’24, October 21–25, 2024, Boise, ID, USA

References
[1] Farhad Abedinzadeh Torghabeh, Yeganeh Modaresnia, and Seyyed Abed Hosseini.

2023. Auto-UFSTool: An Automatic Unsupervised Feature Selection Toolbox
for MATLAB. Journal of AI and Data Mining 11, 4 (2023), 517–524. https:
//doi.org/10.22044/jadm.2023.12820.2434

[2] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: The Advantages of
Careful Seeding. In SODA ’07. ACM, 1027–1035. https://dl.acm.org/doi/10.5555/
1283383.1283494

[3] Deng Cai, Xiaofei He, and Jiawei Han. 2011. Speed up kernel discriminant analysis.
The VLDB Journal 20 (2011), 21–33. https://doi.org/10.1007/s00778-010-0189-3

[4] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20 (1995), 273–297. https://doi.org/10.1007/BF00994018

[5] Thomas M. Cover and Joy A. Thomas. 2005. Entropy, Relative Entropy, and Mutual
Information. John Wiley & Sons, Ltd. 13–55 pages. https://doi.org/10.1002/
047174882X.ch2

[6] S.K. Das. 1971. Feature Selection with a Linear Dependence Measure. IEEE Trans.
Comput. C-20, 9 (1971), 1106–1109. https://doi.org/10.1109/T-C.1971.223412

[7] M. Dash, H. Liu, and J. Yao. 1997. Dimensionality reduction of unsupervised
data. In Proceedings Ninth IEEE International Conference on Tools with Artificial
Intelligence. IEEE, 532–539. https://doi.org/10.1109/TAI.1997.632300

[8] Mark Fanty and Ronald Cole. 1990. Spoken Letter Recognition. In Advances
in Neural Information Processing Systems, Vol. 3. Morgan-Kaufmann, 220–226.
https://proceedings.neurips.cc/paper/1990.

[9] Gene H Golub and Charles F Van Loan. 2013. Matrix computations (fourth ed.).
JHU press. https://doi.org/10.56021/9781421407944

[10] Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature
selection. Journal of machine learning research 3, Mar (2003), 1157–1182. https:
//dl.acm.org/doi/10.5555/944919.944968

[11] Xiaofei He, Deng Cai, and Partha Niyogi. 2005. Laplacian score for feature
selection. In NIPS’05. MIT Press, 507–514. https://dl.acm.org/doi/abs/10.5555/
2976248.2976312

[12] Roger A. Horn and Charles R. Johnson. 2012. Matrix Analysis (2 ed.). Cambridge
University Press. https://doi.org/10.1017/CBO9781139020411

[13] Michael E. Houle, Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur
Zimek. 2010. Can Shared-Neighbor Distances Defeat the Curse of Dimensional-
ity?. In Scientific and Statistical Database Management. Springer Berlin Heidelberg,
482–500. https://doi.org/10.1007/978-3-642-13818-8_34

[14] Haojie Hu, Rong Wang, Feiping Nie, Xiaojun Yang, and Weizhong Yu. 2018. Fast
unsupervised feature selection with anchor graph and ℓ2,1-norm regularization.
Multimedia Tools Appl. 77, 17 (sep 2018), 22099–22113. https://doi.org/10.1007/
s11042-017-5582-0

[15] Haojie Hu, Rong Wang, Xiaojun Yang, and Feiping Nie. 2019. Scalable and
Flexible Unsupervised Feature Selection. Neural Computation 31, 3 (2019), 517–
537. https://doi.org/10.1162/neco_a_01163

[16] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. 2024. The UCI Machine
Learning Repository. https://archive.ics.uci.edu.

[17] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. SNAP Patents. Stan-
ford Large Network Dataset Collection. https://snap.stanford.edu/data/cit-
Patents.html.

[18] Zechao Li, Yi Yang, Jing Liu, Xiaofang Zhou, and Hanqing Lu. 2012. Unsupervised
feature selection using nonnegative spectral analysis. In AAAI’12. AAAI Press,
1026–1032. https://doi.org/10.1609/aaai.v26i1.8289

[19] Yanfang Liu, Dongyi Ye, Wenbin Li, Huihui Wang, and Yang Gao. 2020. Robust
neighborhood embedding for unsupervised feature selection. Knowledge-Based
Systems 193 (2020), 105462. https://doi.org/10.1016/j.knosys.2019.105462

[20] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to information retrieval. Cambridge University Press. https://nlp.
stanford.edu/IR-book/information-retrieval-book.html

[21] Chris Meek, Bo Thiesson, and David Heckerman. 2001. US Census Data (1990).
UCI Machine Learning Repository. https://doi.org/10.24432/C5VP42.

[22] Pabitra Mitra, Chivukula Anjaneya Murthy, and Sankar K. Pal. 2002. Unsuper-
vised feature selection using feature similarity. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24, 3 (2002), 301–312. https://doi.org/10.1109/
34.990133

[23] C. Radhakrishna Rao. 1971. Generalized inverse of matrices and its applications.
Wiley-Interscience. This book is not available online. Readers who cannot access
a physical copy can also look in this online document for the same statement:
MIT course document.

[24] UCI Machine Learning Repository. 2019. GitHub MUSAE. UCI Machine Learning
Repository. https://doi.org/10.24432/C5Z02B.

[25] Saúl Solorio-Fernández, J Ariel Carrasco-Ochoa, and José Fco Martínez-Trinidad.
2020. A review of unsupervised feature selection methods. Artificial Intelligence
Review 53, 2 (2020), 907–948. https://doi.org/10.1007/s10462-019-09682-y

[26] Saúl Solorio-Fernández, José Fco. Martínez-Trinidad, and J. Ariel Carrasco-Ochoa.
2017. A new Unsupervised Spectral Feature Selection Method for mixed data: A
filter approach. Pattern Recognition 72 (2017), 314–326. https://doi.org/10.1016/j.
patcog.2017.07.020

[27] Salvatore Stolfo, Wei Fan, Wenke Lee, Andreas Prodromidis, and Philip Chan.
1999. KDD Cup 1999 Data. UCI Machine Learning Repository. https://doi.org/
10.24432/C51C7N.

[28] Roy Varshavsky, Assaf Gottlieb, Michal Linial, and David Horn. 2006. Novel
Unsupervised Feature Filtering of Biological Data. Bioinformatics 22, 14 (07 2006),
e507–e513. https://doi.org/10.1093/bioinformatics/btl214

[29] Shiping Wang, Witold Pedrycz, Qingxin Zhu, and William Zhu. 2015. Subspace
learning for unsupervised feature selection via matrix factorization. Pattern
Recognition 48, 1 (2015), 10–19. https://doi.org/10.1016/j.patcog.2014.08.004

[30] Shiping Wang, Witold Pedrycz, Qingxin Zhu, and William Zhu. 2015. Unsu-
pervised feature selection via maximum projection and minimum redundancy.
Knowledge-Based Systems 75 (2015), 19–29. https://doi.org/10.1016/j.knosys.2014.
11.008

[31] Yi Yang, Heng Tao Shen, Zhigang Ma, Zi Huang, and Xiaofang Zhou. 2011. ℓ2,1-
norm regularized discriminative feature selection for unsupervised learning.
In IJCAI’11. AAAI Press, 1589–1594. https://dl.acm.org/doi/10.5555/2283516.
2283660

[32] Aihong Yuan, Mengbo You, Dongjian He, and Xuelong Li. 2022. Convex Non-
Negative Matrix Factorization With Adaptive Graph for Unsupervised Feature
Selection. IEEE Transactions on Cybernetics 52, 6 (2022), 5522–5534. https:
//doi.org/10.1109/TCYB.2020.3034462

[33] Zhong Yuan, Hongmei Chen, Pengfei Zhang, Jihong Wan, and Tianrui Li. 2022.
A Novel Unsupervised Approach to Heterogeneous Feature Selection Based on
Fuzzy Mutual Information. IEEE Transactions on Fuzzy Systems 30, 9 (2022),
3395–3409. https://doi.org/10.1109/TFUZZ.2021.3114734

[34] Zheng Zhao and Huan Liu. 2007. Spectral feature selection for supervised and
unsupervised learning. In ICML’07. ACM, 1151–1157. https://doi.org/10.1145/
1273496.1273641

3662

https://doi.org/10.22044/jadm.2023.12820.2434
https://doi.org/10.22044/jadm.2023.12820.2434
https://dl.acm.org/doi/10.5555/1283383.1283494
https://dl.acm.org/doi/10.5555/1283383.1283494
https://doi.org/10.1007/s00778-010-0189-3
https://doi.org/10.1007/BF00994018
https://doi.org/10.1002/047174882X.ch2
https://doi.org/10.1002/047174882X.ch2
https://doi.org/10.1109/T-C.1971.223412
https://doi.org/10.1109/TAI.1997.632300
https://proceedings.neurips.cc/paper/1990/hash/49182f81e6a13cf5eaa496d51fea6406-Abstract.html
https://doi.org/10.56021/9781421407944
https://dl.acm.org/doi/10.5555/944919.944968
https://dl.acm.org/doi/10.5555/944919.944968
https://dl.acm.org/doi/abs/10.5555/2976248.2976312
https://dl.acm.org/doi/abs/10.5555/2976248.2976312
https://doi.org/10.1017/CBO9781139020411
https://doi.org/10.1007/978-3-642-13818-8_34
https://doi.org/10.1007/s11042-017-5582-0
https://doi.org/10.1007/s11042-017-5582-0
https://doi.org/10.1162/neco_a_01163
https://archive.ics.uci.edu
https://snap.stanford.edu/data/cit-Patents.html
https://snap.stanford.edu/data/cit-Patents.html
https://doi.org/10.1609/aaai.v26i1.8289
https://doi.org/10.1016/j.knosys.2019.105462
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://doi.org/10.24432/C5VP42
https://doi.org/10.1109/34.990133
https://doi.org/10.1109/34.990133
https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/0550c89b69c99e97dcbf52074e293308_MIT18_06SCF11_Ses3.8sum.pdf
https://doi.org/10.24432/C5Z02B
https://doi.org/10.1007/s10462-019-09682-y
https://doi.org/10.1016/j.patcog.2017.07.020
https://doi.org/10.1016/j.patcog.2017.07.020
https://doi.org/10.24432/C51C7N
https://doi.org/10.24432/C51C7N
https://doi.org/10.1093/bioinformatics/btl214
https://doi.org/10.1016/j.patcog.2014.08.004
https://doi.org/10.1016/j.knosys.2014.11.008
https://doi.org/10.1016/j.knosys.2014.11.008
https://dl.acm.org/doi/10.5555/2283516.2283660
https://dl.acm.org/doi/10.5555/2283516.2283660
https://doi.org/10.1109/TCYB.2020.3034462
https://doi.org/10.1109/TCYB.2020.3034462
https://doi.org/10.1109/TFUZZ.2021.3114734
https://doi.org/10.1145/1273496.1273641
https://doi.org/10.1145/1273496.1273641

	Abstract
	1 Introduction
	2 Method
	3 Experiments
	4 Conclusion and Future Work
	References

